Exercise 70

If a and b are positive numbers, prove that the equation

$$
\frac{a}{x^{3}+2 x^{2}-1}+\frac{b}{x^{3}+x-2}=0
$$

has at least one solution in the interval $(-1,1)$.

Solution

In order to use the Intermediate Value Theorem, the function in question has to be continuous on the closed interval of interest $[-1,1]$. The one on the left side is not because plugging in $x=1$, for example, makes the denominator $x^{3}+x-2$ zero. Find the zeros of the polynomials in the denominators in order to factor them.

$$
\left\{\begin{aligned}
x^{3}+2 x^{2}-1 & =(x+1)\left(x^{2}+x-1\right)=(x+1)\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right) \\
x^{3}+x-2 & =(x-1)\left(x^{2}+x+2\right)
\end{aligned}\right.
$$

As a result, the equation becomes

$$
\frac{a}{(x+1)\left(x+\frac{1+\sqrt{5}}{2}\right)\left(x+\frac{1-\sqrt{5}}{2}\right)}+\frac{b}{(x-1)\left(x^{2}+x+2\right)}=0 .
$$

Multiply both sides by $(x+1)(x-1)\left(x+\frac{1-\sqrt{5}}{2}\right)$ to remove all factors in the denominators that are zero within the interval $[-1,1]$.

$$
\frac{a(x-1)}{x+\frac{1+\sqrt{5}}{2}}+\frac{b(x+1)\left(x+\frac{1-\sqrt{5}}{2}\right)}{x^{2}+x+2}=0
$$

Let $f(x)$ be this function on the left side.

$$
f(x)=\frac{a(x-1)}{x+\frac{1+\sqrt{5}}{2}}+\frac{b(x+1)\left(x+\frac{1-\sqrt{5}}{2}\right)}{x^{2}+x+2}
$$

Find a value of x for which the function is negative, and find a value of x for which the function is positive.

$$
\begin{aligned}
& f(0)=-\frac{2 a}{1+\sqrt{5}}-\frac{1}{4}(\sqrt{5}-1) b<0 \\
& f(1)=\frac{1}{4}(3-\sqrt{5}) b>0
\end{aligned}
$$

$f(x)$ is the sum of two rational functions, which is continuous on the desired interval $[-1,1]$ since all values of x that made the denominators zero have been removed. $N=0$ lies between $f(0)$ and $f(1)$. By the Intermediate Value Theorem, then, there exists a root within $(0,1)$. Therefore, there is at least one solution in the interval $(-1,1)$.

